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Abstract: 23 

Background: Despite rapid growth in the number of treatments to rehabilitate dysphagia, studies 24 

often demonstrate mixed results with non-significant changes to functional outcomes. Given that 25 

power analyses are infrequently reported in dysphagia research, it remains unclear whether 26 

studies are adequately powered to detect a range of treatment effects. Therefore, this review 27 

sought to examine the current landscape of statistical power in swallowing rehabilitation 28 

research. 29 

Methods: Databases were searched for swallowing treatments using instrumental evaluations of 30 

swallowing and the penetration-aspiration scale as an outcome. Sensitivity power analyses based 31 

on each study’s statistical test and sample size were performed to determine the minimum effect 32 

size detectable with 80% power. 33 

Results: Eighty-nine studies with 94 treatment comparisons were included. Sixty-seven percent 34 

of treatment comparisons were unable to detect effects smaller than d = 0.80. The smallest 35 

detectable effect size was d = 0.29 for electrical stimulation, d = 0.49 for postural maneuvers, d = 36 

0.52 for non-invasive brain stimulation, d = 0.61 for combined treatments, d = 0.63 for 37 

respiratory-based interventions, d = 0.70 for lingual strengthening, and d = 0.79 for oral sensory 38 

stimulation. 39 

Conclusions: Dysphagia treatments examining changes in penetration-aspiration scale scores 40 

were generally powered to reliably detect larger effect sizes and not smaller (but potentially 41 

clinically meaningful) effects. These findings suggest that non-significant results may be related 42 

to low statistical power, highlighting the need for collaborative, well-powered intervention 43 

studies that can detect smaller, clinically meaningful changes in swallowing function. To 44 

facilitate implementation, a tutorial on simulation-based power analyses for ordinal outcomes is 45 

provided (https://osf.io/8sc5e/).  46 
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Introduction 47 

The field of dysphagia has experienced rapid growth in the number and types of 48 

treatments to rehabilitate swallowing dysfunction. Despite these scientific advances, studies 49 

examining the effectiveness of these treatments often yield mixed results with non-significant 50 

changes to functional outcomes. These null findings are often associated with a lack of evidence 51 

for an intervention, prompting some to question their efficacy (1,2). However, clinically 52 

meaningful findings do not always align with statistical significance (3). Non-significant results 53 

may be attributed to inadequate statistical power to detect smaller, but potentially clinically 54 

meaningful, treatment effects. Statistical power is defined as the probability of detecting a “true” 55 

effect (when the effect exists) and involves four parameters in its analysis: power, alpha level, 56 

effect size, and sample size. 57 

In the context of dysphagia rehabilitation, there are several swallowing-specific factors 58 

that should motivate researchers to design studies that can detect smaller treatment effects. First, 59 

dysphagia can be impacted by multiple, complex mechanisms of dysfunction, which may also 60 

vary within and between patient populations; therefore, it is unlikely that one treatment alone 61 

will result in a large effect. Secondly, bolus, task, and disease characteristics may increase 62 

swallowing variability, which can substantially reduce statistical power (4–6). Finally, effect 63 

sizes become increasingly smaller as the number of factors that influence a behavior increases 64 

(7); thus, dysphagia interventions seeking to improve functional outcomes in patients with 65 

multiple underlying mechanisms of dysfunction will require study designs, analyses, and sample 66 

sizes that have a high likelihood of detecting smaller effects. To confidently evaluate the ability 67 

of interventions to improve swallowing function, studies will require sufficient statistical power 68 

to detect a range of clinically meaningful effect sizes. 69 

Though statistical power is often recommended to be 80%, this threshold is arbitrary and 70 

results in missing a “true” treatment effect 1 in 5 times (8). Power is not a binary classification 71 

(e.g., “well-powered” versus “underpowered”); instead, it exists on a curve, affording varying 72 

degrees of power depending on the effect size of interest (9,10). For example, a study may have 73 

90% power to detect a ‘large’ effect (e.g., d = 1.20) but only 40% power to detect a smaller 74 

magnitude effect (e.g., d = 0.30). Additionally, it is important to understand that power extends 75 

beyond merely the number of participants collected and is specific to a study’s design and 76 
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statistical analysis, such that certain designs (e.g., within- versus between-subject) and analyses 77 

(e.g., parametric versus non-parametric) afford higher statistical power (11).  78 

There has been an increased awareness of the prevalence and impact of low-powered 79 

studies across many disciplines because of the importance of reproducibility and minimizing 80 

error (12–14). Statistical power affects one’s ability to accurately detect and estimate the 81 

direction and magnitude of an effect, which impacts the reliability of research findings (15). 82 

Studies with low power are not only less likely to detect an effect, but also have a higher false 83 

positive rate when a statistically significant result is reported (12,16,17). This means that studies 84 

with low power may mistakenly make a ‘false discovery’, indicating that a treatment effect is 85 

present when there is no true treatment effect. The effect size estimate can also be inflated in 86 

low-powered studies, overestimating its true magnitude (18). This overestimation is most notable 87 

in studies with less than 50% power to detect a true effect (15). These errors contribute to 88 

publication bias and affect reproducibility, often resulting in different conclusions across studies 89 

(19). 90 

It remains unclear whether swallowing rehabilitation research demonstrates adequate 91 

statistical power to detect a range of treatment effects. Given recent findings that only 9% of 92 

studies using the penetration-aspiration scale reported a power analysis, studies may not be 93 

appropriately powered to detect treatment effects with this outcome (20). Therefore, this review 94 

aimed to examine the current landscape of statistical power in swallowing rehabilitation 95 

research. Since statistical power is unique to a given research question and analysis, we chose to 96 

investigate studies examining changes to the penetration-aspiration scale – an outcome measure 97 

with widespread clinical and research use in the field of dysphagia (21). The minimum effect 98 

size detectable with 80% power was then calculated for each study. Across all studies, we used a 99 

common effect size metric, namely Cohen’s d, to describe the relative sensitivity of swallowing 100 

rehabilitation research to detect a range of effects. Notably, these effect sizes do not reflect each 101 

study’s results; instead, they indicate the minimum effect size that was detectable with 80% 102 

power given the study design, sample size, and analysis. In this sense, studies with higher 103 

statistical power have a greater likelihood to detect smaller effect sizes. 104 

 105 

Methods 106 

Search Strategy 107 
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The search strategy was conducted in September 2021 according to PRISMA guidelines 108 

(22). Two databases (Web of Science and PubMed) were queried for peer-reviewed publications 109 

citing “A Penetration-Aspiration Scale” (21) in order to identify studies using this outcome. 110 

Relevant systematic reviews and meta-analyses were also searched. For inclusion in the review, 111 

studies needed to have been interventions on adult populations (≥ 18 years of age) using the 112 

penetration-aspiration scale as an outcome measure during instrumental assessments of 113 

swallowing (flexible endoscopic evaluations of swallowing or videofluoroscopic swallowing 114 

studies). Exclusion criteria included studies descriptively reporting penetration-aspiration scale 115 

results without statistical analysis, non-English articles, pediatric populations, surgical 116 

treatments, and compensatory strategies (e.g., chin tuck, bolus modifications). Case series with 117 

less than 4 participants were also excluded since analyses with these sample sizes are typically 118 

descriptive in nature. Studies that did not provide sufficient information to calculate the 119 

minimum effect size detectable were excluded. 120 

 121 

Study Selection & Data Abstraction 122 

After removal of duplicates, titles and abstracts were screened for inclusion. Full-text 123 

articles were then assessed for final inclusion. The following variables were extracted from each 124 

article: treatment type, sample size, patient population, study design, whether a power analysis 125 

was reported, type of statistical analysis and comparison (i.e., between versus within-subject), 126 

comparison p-value, and alpha level. A conservative approach to power estimation was used, 127 

such that the statistical test and sample size from the comparison that afforded the highest power 128 

was chosen. For example, if a study performed both between- (i.e., experimental vs control 129 

group) and within-subject (i.e., pre- to post-intervention for the experimental group) comparisons 130 

with the penetration-aspiration scale then the statistical test and sample size for the comparison 131 

that provided the highest power was used. Sensitivity analyses did not include additional 132 

covariates (e.g., bolus consistency, age). 133 

 134 

Statistical Analysis 135 

Sensitivity power analyses were performed in R version 4.0 for parametric statistical tests 136 

(23) and G*Power version 3.1 for non-parametric tests (24). Despite strict statistical assumptions 137 

imposed in G*Power (i.e., normal distribution of difference scores for the Wilcoxon signed-rank 138 
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test), we decided to use this software given its prevalence in clinical research. Sensitivity power 139 

analyses were performed based on the statistical test, sample size, and alpha level to determine 140 

the minimum effect size detectable with 80% power. Effect sizes were calculated based on the 141 

statistical test performed, then converted to Cohen’s d to provide a standardized measure of 142 

effect size across studies. Though Cohen’s d is an effect size measure for continuous outcomes 143 

and is not recommended for ordinal outcomes (e.g., the penetration-aspiration scale), we used 144 

this effect size since most studies reported Cohen’s d. Thus, this reduced the number of effect 145 

size conversions and provided a common metric for comparisons across highly heterogeneous 146 

studies. Given that studies did not consistently report correlations between pre- and post-147 

treatment outcomes for within-subject comparisons, a “moderate” correlation was assumed when 148 

converting from Cohen’s dz to Cohen’s d. The following formula was used for this conversion, 149 

where ρ = 0.50 (25).  150 

! = !# × %2 × (1 − *) 151 

Cohen’s d represents a standardized mean difference, which is calculated by dividing the 152 

difference in means by sources of variation. These values can then be interpreted as a percentage 153 

of the standard deviation; for example, a Cohen’s d value of 0.50 means the difference between 154 

two groups equals half a standard deviation (26). Though conventional guidelines for “small” (d 155 

= 0.20), “medium” (d = 0.50), and “large” (d = 0.80) effect sizes were used to provide a general 156 

framework for the magnitude of effects that studies were adequately powered to detect (11), raw 157 

effect size values were also examined for more precise interpretation. In this review, these effect 158 

size values are presented in the context of each study’s sensitivity (i.e., power) to detect a range 159 

of effects. Importantly, these values do not represent actual effect size results from these studies. 160 

Power-determination analyses were also performed across a range of effect sizes (d = 0.1 – 1.0) 161 

for each study. 162 

 163 

Results 164 

The database search resulted in 1298 studies from Web of Science, 630 studies from 165 

PubMed, and 9 from a manual search. Once duplicates were removed, 1376 unique studies 166 

remained (Figure 1). Five studies using multilevel models were excluded since the minimum 167 

effect size detectable with 80% power could not be calculated (27–31). Eighty-nine studies met 168 

inclusion criteria, including 39 surface or pharyngeal electrical stimulation (32–70), 14 non-169 
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invasive brain stimulation (33,68,71–82), 14 respiratory (32,83–95), nine postural (96–104), six 170 

oral sensory stimulation (51,66,105–108), five lingual strengthening (109–113), and seven 171 

interventions with a combination of treatments (114–120). Five studies included two treatments 172 

(32,33,68,97,102); thus, the final number of treatment studies was 94. Fifty-nine studies were 173 

randomized controlled trials. The penetration-aspiration scale was the primary outcome of 174 

interest in most studies (56%), whereas 21% of studies indicated that it was a secondary 175 

outcome. The remaining 23% of studies did not explicitly state whether the penetration-176 

aspiration scale was a primary or secondary outcome. Most (87%) treatment comparisons 177 

selected for sensitivity power analyses were within-subject statistical analyses. Eighty-six (91%) 178 

treatment comparisons used statistical analyses that provided Cohen’s d as a measure of effect 179 

size, whereas only 3 comparisons used odds ratios (OR) and 5 used an effect size for chi-squared 180 

tests (φ). Fifty-nine (63%) treatment comparisons reported a statistically significant result (Table 181 

1). Among studies without a power analysis, 8 studies qualitatively cited low power as a 182 

potential reason for a null finding. 183 

Power analyses were reported in 21 studies and thresholds for power ranged from 60% – 184 

90% (Table 1). Two treatment comparisons were powered to detect effect sizes smaller than d = 185 

0.50 (Figure 2). The minimum detectable effect size across studies using a between-subject 186 

analysis was d = 0.58 for electrical stimulation, d = 0.74 for respiratory interventions, d = 0.74 187 

for postural maneuvers, d = 0.93 for combined treatments, d = 1.11 for non-invasive brain 188 

stimulation, and d = 1.15 for oral sensory stimulation. For studies using a within-subject 189 

analysis, the minimum detectable effect size was d = 0.29 for electrical stimulation, d = 0.49 for 190 

postural maneuvers, d = 0.52 for non-invasive brain stimulation, d = 0.61 for combined 191 

treatments, d = 0.63 for respiratory interventions, d = 0.70 for lingual strengthening, and d = 0.79 192 

for oral sensory stimulation. Sixty-seven percent of treatment comparisons were unable to detect 193 

effects smaller than d = 0.80 with adequate statistical power.  194 

 195 

Discussion 196 

Though a variety of treatments to rehabilitate swallowing dysfunction are available to 197 

clinicians, inconsistent conclusions across studies obfuscates clinical best practice. This literature 198 

is defined by mixed results which may be attributed to inadequate statistical power, affecting a 199 

researcher’s ability to accurately detect and estimate treatment effects. The present review 200 
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suggests that swallowing rehabilitation research is generally powered to detect conventionally 201 

large effect sizes and not smaller (potentially clinically meaningful) effects, which may help to 202 

explain mixed findings commonly seen in the literature.  203 

Treatments included in this review spanned various domains, including postural 204 

maneuvers, non-invasive brain stimulation, and respiratory-based interventions. Across all 205 

treatments, adequate sensitivity to detect effects less than d = 0.50 was extremely rare. 206 

Furthermore, most (67%) treatment comparisons only had sufficient power to detect 207 

conventionally ‘large’ effects (i.e., d > 0.80), suggesting that non-significant results may be 208 

related to inadequate statistical power to detect smaller, but potentially clinically meaningful, 209 

effects (Figure 2). For example, as revealed in this systematic review, non-invasive brain 210 

stimulation studies seeking to detect a treatment effect of d = 0.70 would have an average of 49% 211 

power, meaning that these studies would detect a true treatment effect less than half of the time. 212 

In addition to this low sensitivity to detect treatment effects, studies with low statistical power 213 

are also more likely to result in inaccurate effect size estimates (15). 214 

Multiple mechanisms of dysfunction, including disordered laryngeal vestibule closure, 215 

tongue base retraction, or pharyngeal constriction, often contribute to impairments in functional 216 

swallowing outcomes (i.e., aspiration or pharyngeal residue). Regardless of whether a given 217 

treatment is designed to target one or many mechanisms of swallowing dysfunction, the 218 

multifactorial nature of dysphagia makes it such that a single treatment is unlikely to result in 219 

large functional improvements to swallowing. Therefore, power analyses that explicitly specify 220 

the smallest treatment effect size of interest (i.e., the minimum amount of change in an outcome 221 

that is meaningful for a study to detect) are imperative to ensure that a study is not only 222 

informative, but also falsifiable. This central component of study design and power analyses 223 

requires careful consideration to ensure clinically meaningful effects have a high likelihood of 224 

detection and accurate estimation given the complex nature of dysphagia. 225 

 Rehabilitation research poses significant challenges to one of the most conventional 226 

methods of increasing statistical power in treatment studies – the recruitment of large patient 227 

samples. Barriers that prohibit merely increasing the sample size include, but are not limited to, 228 

the financial and ethical burden of large-scale clinical trials, the rarity of many diseases which 229 

result in dysphagia, and heightened variability between and within patient populations (121). In 230 

order to reduce the impact of these barriers, non-conventional analyses and study designs, such 231 
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as one-tailed statistical tests, multilevel models, and sequential designs, have been proposed as 232 

alternative approaches to increase power (122,123).  233 

Though one-tailed tests are not common practice in the field of dysphagia, when 234 

specified a priori they can be a valid approach to maximize statistical power. One-tailed tests are 235 

beneficial if an effect is hypothesized to exist in only one direction and the opposite direction is 236 

not interesting nor expected. To achieve 80% power, a two-sided test would require a 20% larger 237 

sample size compared to a one-sided test. In this sense, one-sided statistical tests maximize data 238 

collection efficiency (124). For example, in one of the studies included in this review, Ludlow 239 

and colleagues used a one-tailed t-test with a sample size of 8 participants (61), which afforded a 240 

minimum detectable effect size of d = 0.98 compared to d = 1.16 with a two-sided approach. 241 

Multilevel models, also known as mixed effects or hierarchical models, are another 242 

approach to potentially increase statistical power (125); however, they are rarely utilized in the 243 

dysphagia treatment literature (five out of 99 studies in this review). Whereas common statistical 244 

tests (e.g., t-tests, ANOVA, etc.) require aggregating multiple trials of an outcome to ensure a 245 

single data point represents each participant, multilevel models avoid aggregation. This 246 

effectively increases the sample size by including repeated trials while also allowing for analyses 247 

at the participant level.  248 

Sequential analyses are a common approach in medical trials to optimize data collection 249 

efficiency (e.g., (126)). In this design, an a priori power analysis is performed and various data 250 

analysis time points (e.g., interim analysis) are prespecified with explicit methods to control the 251 

type 1 error rate (123). A major benefit is that data collection can often be stopped early (i.e., 252 

before the sample size specified in the power analysis is reached) given a reasonably high chance 253 

of observing a statistically significant finding after collecting less than half of the sample size 254 

(123). Though this type of design is beneficial for investigating whether a treatment effect might 255 

exist, effect sizes obtained from interim analyses are subject to the same small sample bias as 256 

underpowered studies and may require adjustments or follow-up studies to obtain an accurate 257 

effect size estimate (127). 258 

Though power analyses were only reported in 20% of studies in this review, many 259 

qualitatively cited “low statistical power” as a reason for obtaining a null finding. However, none 260 

of these studies provided a quantitative analysis of the sensitivity of the study design and data to 261 

detect a treatment effect. Sensitivity power analyses are one approach to enhance one’s 262 
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understanding of the range of treatment effect sizes that could be reliably detected with an 263 

analysis, improving the interpretation of null findings. A sensitivity power analysis is dependent 264 

on the statistical analysis approach and provides the minimum detectable effect size given the 265 

desired level of power, alpha level, and sample size. For example, if a sensitivity power analysis 266 

reveals that a study has 80% power to detect d = 0.40 yet finds a non-significant result, then 267 

treatment effects larger than d = 0.40 are unlikely and treatment effects lower than d = 0.40 are 268 

possible, but the study design was insufficient to detect them. A major benefit of sensitivity 269 

power analyses is that they do not increase researcher burden since they can be performed after 270 

data are collected. This type of power analysis implicitly recognizes that resources are limited, 271 

and sample size is often based on feasibility constraints. Though sensitivity power analyses can 272 

be easily performed for common statistical tests with current software (e.g., (24,128)), multilevel 273 

models require a Monte Carlo simulation approach (129). A lack of software to perform these 274 

simulation-based power analyses, particularly with ordinal outcomes, is a substantial barrier for 275 

clinical researchers. Therefore, we have provided a brief supplemental tutorial for simulation-276 

based power analyses with ordinal outcomes for both non-parametric tests (Mann-Whitney U 277 

and Wilcoxon signed-rank tests) and mixed effects (cumulative link) models 278 

(https://osf.io/8sc5e/). 279 

 A common approach to reconcile multiple treatment studies with mixed findings is to 280 

perform a systematic review. These reviews attempt to synthesize available evidence, ultimately 281 

providing an assessment of a treatment’s efficacy. However, systematic reviews rarely 282 

acknowledge statistical power. If underpowered studies predominate, then conclusions based 283 

solely on the number of studies that reported a statistically significant result will be biased. An 284 

alternate approach is to combine studies in a meta-analysis to provide an overall summary effect. 285 

In the field of dysphagia; however, this approach is often untenable due to substantial 286 

heterogeneity in study design, patient populations, statistical analyses, assessment types, and 287 

swallowing tasks. Furthermore, direct replication studies are exceedingly rare. These barriers 288 

prohibit implementing rigorous meta-analyses to inform patient care. One potential solution 289 

which has garnered interest in other fields is open data sets (130). This not only ensures 290 

transparency and reproducibility, but also facilitates meta-analyses. Data sharing provides 291 

substantial benefits to the research community, most notably in the presence of mixed results, 292 

heterogenous studies, and a growing knowledge base. 293 
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There are several limitations to acknowledge in this review. Our results are specific to the 294 

penetration-aspiration scale. We acknowledge that interventions may not have been powered or 295 

designed to target this outcome. Instead, other outcomes may have been more appropriate given 296 

a study’s research question. We chose the penetration-aspiration scale as our outcome of interest 297 

due to its widespread use in dysphagia management, which permitted inclusion of a large 298 

number of studies. Prior studies examining statistical power within a given field have used the 299 

summary effect size from meta-analyses as the “true effect” in their power analysis (12,131). 300 

However, this approach was not feasible in the dysphagia treatment literature due to a low 301 

number of meta-analyses. Furthermore, meta-analysis estimates from studies with predominantly 302 

low power may not reflect the true population effect. Instead, we used an approach to detect the 303 

sensitivity of each study by determining the minimum effect size detectable with 80% power. 304 

We used Cohen’s d as the measure of effect size to summarize sensitivity across studies but 305 

acknowledge that conversion between effect sizes may affect their interpretation. Additionally, 306 

we assumed a “moderate” correlation for time points for within-subject statistical tests (e.g., 307 

Wilcoxon signed rank-test) and acknowledge that different magnitudes of within-subject 308 

correlations across studies may have affected our effect size estimates from sensitivity power 309 

analyses. However, studies did not commonly report this correlation which prohibited uniformly 310 

incorporating it into our analyses. Studies included in this review included diverse 311 

methodologies and analyses which may have affected their sensitivity to detect effects, such as 312 

the type of statistical test, level of comparison, alpha level, and statistical use of the penetration-313 

aspiration scale (i.e., interval, ordinal, or categorical). Since we used an approach that maximized 314 

the sensitivity of each study, this may have overestimated statistical power, most notably in 315 

situations where parametric analyses (i.e., Cohen’s d) were used. However, we were unable to 316 

perform re-calculations with appropriate statistical analyses without access to the original data. 317 

We used conventional guidelines for “small”, “moderate”, and “large” Cohen’s d when 318 

interpreting minimum detectable effect sizes, though we recognize that these benchmarks are 319 

relative concepts and fully dependent on one’s subfield, research context, and the smallest effect 320 

size of interest. The use of these effect size benchmarks may result in misrepresentation of the 321 

smallest effect size of interest for a given study’s primary aim and outcome of interest. However, 322 

understanding the smallest effect size of interest for each study is not necessary to evaluate 323 

power across swallowing rehabilitation research. Future research will be necessary to better 324 
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define clinically significant change in swallowing outcomes in order to inform meaningful effect 325 

sizes for power analyses. 326 

 327 

Conclusions 328 

 Though statistical power is a central component of study design, power analyses are 329 

infrequently reported in swallowing rehabilitation research. The current review suggests that 330 

swallowing interventions examining the penetration-aspiration scale are generally powered to 331 

only reliably detect larger effect sizes, whereas smaller (but potentially clinically meaningful) 332 

effects have a low likelihood of detection. These findings may help to explain mixed results 333 

commonly seen in the dysphagia treatment literature. Non-conventional study designs and 334 

statistical analyses may be important considerations to increase power in smaller samples. To 335 

promote higher levels of evidence in the context of meta-analysis, open data sets and transparent 336 

reporting may also improve the quality of inferences. Moving forward, a comprehensive 337 

understanding of clinically meaningful change in swallowing outcomes should be a priority to 338 

not only assist in sample size justifications, but also to ensure falsifiable and impactful findings 339 

that inform clinical practice.340 
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Figure 1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram 
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Figure 2: Minimum Effect Size Detectable with 80% Power Across Treatments 
 

 
Note:  
1The ability of a study to detect smaller effect sizes is desired.  
2Cohen’s d conventional benchmarks (i.e., “small”, “medium”, and “large) are provided for general interpretation. However, these 
guidelines are relative concepts and depend on clinical significance in the context of a given research question.  
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Table 1: Descriptive Statistics & Sensitivity Power Analyses 
 

Electrical Stimulation 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Arreola, 2021 Stroke RCT (89) 
Wilcoxon 

signed rank 
test 

Within-
subjects 30 Ordinal Yes (80%) 0.54 

Bath, 2016 Stroke RCT (129) 
Repeated 
measures 
ANOVA 

Between-
subjects 126 Interval Yes (90%) 0.50 

Bath, 2020 Neurogenic Observational 
(236) Paired t-test Within-

subjects 98 Interval Yes (80%) 0.29 

Bhatt, 2015 Head and 
neck cancer 

Observational 
Retrospective 

(95) 

Independent 
samples t-test 

Between-
subjects 

54 
(experimental), 

41 (control) 
Interval No 0.59 

Bogaardt, 2009 Multiple 
sclerosis 

Observational 
(25) 

Wilcoxon 
signed rank 

test 

Within-
subjects 25 Ordinal No 0.60 

Everton, 2021 Stroke RCT (72) Independent 
samples t-test 

Between-
subjects 

38 
(experimental), 

34 (control) 
Interval No 0.67 

Gallas, 2010 Stroke Observational 
(11) 

Repeated 
measures 
ANOVA 

Within- 
subjects 11 Interval No 1.86 

Guillen-Sola, 2017 Stroke RCT (62) Chi-square 
test 

Between-
subjects 

17 
(experimental), 

17 (control) 

Categorical 
(1-5, 6-8) No 1.25 
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Hagglund, 2020 Stroke RCT (32) 
Wilcoxon 

signed rank 
test 

Within- 
subjects 18 Ordinal Yes (80%) 0.72 

Huang, 2014 Stroke RCT (29) 
Repeated 
measures 
ANOVA 

Within- 
subjects 10 Ordinal No 1.99 

Jayasekeran, 2010 Stroke RCT (50) 
Mann-

Whitney U 
test 

Between-
subjects 

22 
(experimental), 

28 (control) 
Ordinal Yes (80%) 0.83 

Jeon, 2020 Stroke RCT (34) 
Repeated 
measures 
ANOVA 

Within- 
subjects 17 Interval Yes (80%) 0.99 

Ko, 2016 
Stroke and 
traumatic 

brain injury 

Observational 
(28) 

Repeated 
measures 
ANOVA 

Within- 
subjects 12 Interval No 1.94 

Langmore, 2015 Head and 
neck cancer RCT (116) 

Repeated 
measures 

ANCOVA 

Within- 
subjects 54 Interval No 0.50 

Lee, 2015 Heterogenous Observational 
(15) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 15 Ordinal No 0.80 

Lee, 2019 Stroke RCT (40) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 20 Ordinal No 0.68 

Lee, 2021 
Stroke, brain 

tumor, 
encephalitis 

RCT (49) Paired t-test Within- 
subjects 26 Interval Yes (80%) 0.57 

Lim, 2009 Stroke RCT (28) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 16 Ordinal No 0.77 

Lim, 2014 Stroke RCT (47) 
Mann-

Whitney U 
test 

Between- 
subjects 

18 
(experimental), 

15 (control) 
Ordinal No 1.04 
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Lin, 2011 Head and 
neck cancer RCT (20) Paired t-test Within- 

subjects 10 Interval No 1.00 

Ludlow, 2007 

Brain injury, 
cardiovascular 
disease, brain 

tumor, 
Parkinson’s 

disease 

Crossover 
Design (11) Paired t-test Within- 

subjects 10 Interval No 0.85 

Martindale, 2019 Stroke & non-
stroke 

Observational 
(43) 

Repeated 
measures 
ANOVA 

Within- 
subjects 43 Interval No 0.88 

Michou, 2014 Stroke RCT (18) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 6 Ordinal No 1.49 

Miller, 2021 Stroke RCT (12) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 12 Ordinal No 0.91 

Mituuti, 2018 Stroke Observational 
(10) 

Friedman’s 
ANOVA 

Within- 
subjects 10  Ordinal No 1.99 

Oh, 2019 Stroke RCT (26) Paired t-test Within- 
subjects 14 Interval No 0.81 

Ortega, 2016 Older adults RCT (38) Chi-square 
test 

Between-
subjects 

19 
(experimental), 

19 
(comparison) 

Categorical No 1.15 

Park, 2012 Stroke RCT (18) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 9 Ordinal No 1.10 

Park, 2016 Stroke RCT (50) Paired t-test Within- 
subjects 25 Interval Yes (80%) 0.58 
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Park, 2018 Parkinson’s 
disease RCT (18) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 9 Ordinal No 1.10 

Park, 2019 Stroke Observational 
(10) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 10 Ordinal Yes (80%) 1.03 

Restivo, 2013 Multiple 
sclerosis RCT (20) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 10 Ordinal No 1.03 

Rofes, 2013 Stroke RCT (20) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 10 Ordinal No 1.03 

Seo, 2021 Stroke RCT (23) 
Wilcoxon 

signed-rank 
test 

Within- 
subjects 12 Ordinal No 0.91 

Simonelli, 2019 Stroke RCT (31) 
Mann 

Whitney U 
test 

Between- 
subjects 

16 
(experimental), 

15 (control) 
Ordinal No 1.07 

Sun, 2013 Stroke Observational 
(29) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 29 Ordinal Yes (80%) 0.55 

Terre, 2015 Traumatic 
brain injury RCT (20) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 10 Ordinal No 1.03 

Vasant, 2016 Stroke RCT (35) Logistic 
regression 

Between-
subjects 35 Categorical 

(1-2, 3-8) Yes (80%) 1.45 

Verin, 2011 

Stroke, 
multiple 
sclerosis, 

Parkinson’s 
disease, 

progressive 

Crossover 
Design (11) 

Wilcoxon 
signed-rank 

test 

Within- 
subjects 13 Ordinal No 0.87 
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supranuclear 
palsy 

Non-Invasive Brain Stimulation 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Khedr, 2019 Parkinson’s 
disease RCT (30) Paired t-test Within-

subjects 19 Interval Yes (80%) 0.68 

Kim, 2011 Traumatic 
brain injury RCT (30) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 10 Ordinal No 1.03 

Lee, 2015 Stroke RCT (24) 
Repeated 
measures 
ANOVA 

Within-
subjects 12 Interval No 1.20 

Lim, 2014 Stroke RCT (47) 
Mann-

Whitney U 
test 

Between-
subjects 

14 
(experimental), 

15 (control) 
Ordinal No 1.11 

Lin, 2018 Stroke RCT (28) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 13 Ordinal Yes (80%) 0.87 

Michou, 2012 Stroke Observational 
(6) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 6 Ordinal No 1.49 

Michou, 2014 Stroke RCT (18) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 6 Ordinal No 1.49 

Park, 2013 Stroke RCT (18) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 9 Ordinal No 1.10 
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Park, 2017 Stroke RCT (33) Paired t-test Within-
subjects 11 Interval No 0.94 

Park, 2019 Geriatric Observational 
(8) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 8 Ordinal No 1.19 

Restivo, 2019 Multiple 
sclerosis RCT (18) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 9 Ordinal No 1.10 

Unluer, 2019 Stroke RCT (28) Friedman’s 
ANOVA 

Within-
subjects 15 Ordinal Yes (80%) 0.78 

Verin, 2008 Stroke Observational 
(7) 

Repeated 
measures 
ANOVA 

Within-
subjects 7 Interval No 2.55 

Zhong, 2021 Stroke RCT (147) 
Repeated 
measures 
ANOVA 

Within-
subjects 36 Interval No 0.51 

Respiratory Interventions 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Arnold, 2020 Stroke Observational 
(20) Paired t-test Within-

subjects 10 Interval No 1.00 

Eom, 2017 Stroke RCT (26) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 13 Ordinal Yes (60%) 0.87 

Guillen-Sola, 2017 Stroke RCT (62) Chi-square 
test 

Between-
subjects 

16 
(experimental), 

17 (control) 

Categorical 
(1-4; 5-8) No 1.28 
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Hegland, 2016 Stroke Observational 
(12) 

Repeated 
measures 
ANOVA 

Within-
subjects 12 Interval No 1.78 

Hutcheson, 2018 Head and 
neck cancer 

Observational 
(64) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 23 Ordinal Yes (90%) 0.63 

Jang, 2019 Stroke RCT (32) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 18 Ordinal No 0.72 

Martin-Harris, 
2015 

Head and 
neck cancer 

Observational 
(30) 

Test of 
Proportions 

Within-
subjects 30 Categorical Yes (80%) 0.93 

Mohannak, 2020 
Inclusion 

Body 
Myositis 

Observational 
(12) Paired t-test Within-

subjects 12 Interval No 0.89 

Moon, 2017 Stroke RCT (18) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 9 Ordinal No 1.10 

Park, 2016 Stroke RCT (27) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 14 Ordinal No 0.83 

Pitts, 2009 Parkinson’s 
disease 

Observational 
(10) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 10 Ordinal No 1.03 

Plowman, 2016 ALS Observational 
(15) 

Repeated 
measures 
ANOVA 

Within-
subjects 15 Interval No 1.69 

Plowman, 2019 ALS RCT (46) Chi-square 
test 

Between-
subjects 

23 
(experimental), 

23 (control) 

Categorical 
(1-2, 3-8) No 1.00 

Troche, 2010 Parkinson’s 
disease RCT (60) 

Repeated 
measures 

ANCOVA 

Between-
subjects 

30 
(experimental), 

30 (control) 
Interval Yes (80%) 0.74 
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Combined Treatments 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Balou, 2019 Older adults Observational 
(9) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 9 Ordinal No 1.1 

Furuie, 2019 Head and 
neck cancer 

Observational 
(30) 

Independent 
samples t-test 

Between-
subjects 

30 
(experimental), 

30 (control) 
Interval No 1.06 

Hsiang, 2019 Head and 
neck cancer RCT (40) 

Mann 
Whitney-U 

test 

Between-
subjects 

20 
(experimental), 

20 (control 
Ordinal Yes (80%) 0.93 

Kraaijenga, 2017 Head and 
neck cancer 

Observational 
(17) Paired t-test Within-

subjects 17 Interval Yes (80%) 0.72 

Tarameshlu, 2019 Multiple 
sclerosis RCT (20) Independent 

samples t-test 
Between-
subjects 

10 
(experimental), 

10 (control 
Interval No 1.32 

van der Molen, 
2011 

Head and 
neck cancer RCT (49) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 24 Ordinal No 0.61 

van der Molen, 
2014 

Head and 
neck cancer RCT (49) McNemar test Within-

subjects 29 Categorical No 0.93 

Lingual Strengthening 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 
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Kim, 2017 Stroke RCT (35) Paired t-test Within-
subjects 18 Interval No 0.70 

Namiki, 2019 Geriatric Observational 
(18) 

Wilcoxon 
signed-rank 

test 

Within-
subjects 18 Ordinal Yes (80%) 0.72 

Robbins, 2005 Geriatric Observational 
(10) 

Repeated 
measures 

ANCOVA 

Within-
subjects 10 Interval No 1.99 

Robbins, 2007 Stroke Observational 
(10) Paired t-test Within-

subjects 10 Interval No 1.00 

Steele, 2016 Stroke RCT (11) Friedman’s 
ANOVA 

Within-
subjects 6 Ordinal Yes (NR) 1.43 

Postural Maneuvers 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 

Reported & 
Threshold 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Choi, 2017 Stroke RCT (32) Paired t-test Within-
subjects 16 Interval Yes (60%) 0.75 

Gao, 2017 Stroke RCT (90) 
Repeated 
measures 
ANOVA 

Between-
subjects 

30 
(experimental), 

30 (control) 
Interval No 0.67 

Kim, 2019 Stroke RCT (25) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 12 Ordinal Yes (60%) 0.91 

Mano, 2015 

Spinal and 
bulbar 

muscular 
atrophy 

Observational 
(6) Paired t-test Within-

subjects 6 Interval No 1.43 
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Park, 2017 Stroke RCT (37) Paired t-test Within-
subjects 19 Interval Yes (80%) 0.68 

Park, 2018 Stroke RCT (22) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 11 Ordinal No 0.97 

Park, 2019 Stroke RCT (37) Paired t-test Within-
subjects 18 Interval Yes (80%) 0.70 

Park, 2020 Stroke RCT (20) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 15 Ordinal Yes (60%) 0.80 

Ploumis, 2018 Stroke RCT (70) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 37 Ordinal No 0.49 

Oral Sensory Stimulation 

Author, Year Patient 
Population 

Study Design 
(Total Sample 

Size) 

Statistical 
Approach Comparison Comparison 

Sample Size 
PAS 

Treatment 

Power 
Analysis 
Reported 

(Threshold) 

Minimum 
Cohen’s d 

Detectable at 
80% Power 

Jakobsen, 2019 Brain injury RCT (10) 
Wilcoxon 

signed-rank 
test 

Within-
subjects 5 Ordinal No 1.76 

Ortega, 2016 Older adults RCT (38) Chi-square 
test 

Between-
subjects 

19 
(experimental), 

19 
(comparison) 

Categorical No 1.15 

Power, 2006 Stroke RCT (16) 
Repeated 
measures 
ANOVA 

Within-
subjects 8 Interval No 1.51 

Rosenbek, 1998 Stroke RCT (45) Paired t-test Within-
subjects 13 Interval No 0.85 
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Tomsen, 2019 Older adults RCT (28) Paired t-test Within-
subjects 7 Interval No 1.27 

RCT: Randomized controlled trial, NR: Not reported, ANOVA: Analysis of variance, ANCOVA: Analysis of covariance 
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